SANTA ANA, CA SCOTTSDALE, AZ For more information call: (602) 941-6300 # MLL5817, MLL5818, MLL5819 and MLL6650 #### 1 AMP SCHOTTKY RECTIFIERS Figure 1 | DIM. | MILLIN | IETERS | INCHES | | | |------|--------|---------------|--------|------|--| | | MIN. | MAX. | MIN. | MAX. | | | Α | 4.80 | 5.20 | .189 | .205 | | | В | 2.39 | 2.66 | .094 | .105 | | | U | 0.41 | 0.55 | .016 | .022 | | DO-213AB # Mechanical Characteristics **CASE:** Hermetically sealed glass with solder contact tabs at each end. **FINISH:** All external surfaces are corrosion resistant, readily solderable. #### POLARITY: Banded end is cathode. ### THERMAL RESISTANCE: 50°C/ Watt typical junction to end caps. (See Power Derating Curve). # **MOUNTING POSITION:** Any. # **Description / Features** - SCHOTTKY BARRIER RECTIFIER - . GUARD RING PROTECTION - LOW FORWARD VOLTAGE - HIGH CURRENT CAPABILITY - EXTREMELY FAST SWITCHING TIME - PENDING QUALIFICATION TO NEW MIL-S-19500/586 #### **Maximum Ratings** Storage Temperature (T_{STG}): -65°C to +150°C Operating Junction Temperature (T_{S}): -65°C to +150°C Operating End Cap Temperature (T_{EC}): -65°C to +125°C Maximum Thermal Resistance (T_{EC}): 45°C/W #### **Application** This surface mount series of Schottky 1.0 Amp rated rectifiers provides a metal to silicon barrier rectifier with majority carrier conduction and low forward voltage, using oxide passivation and diffused guard ring protection. They are ideally suited as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, switch mode power supplies, and polarity protection. ## *Electrical Characteristics @ 25° C | | MAXIMUM FORWARD
VOLTAGE (V _F)
(Note 1) | | | PEAK
REVERSE
VOLTAGE | | SURGE
CURRENT
MAX. | PEAK
REVERSE
CURRENT | JUNCTION
CAPACITANCE
TYPICAL | |--|--|-----------------------|--------------------------|----------------------------|--------------------------|--------------------------|----------------------------|--| | MICROSEMI
PART | I _F = 0.1A | I _F = 1.0A | I _F = 3.0A | VRRM @
(See Note 2) | (See Note 3) | IFSM
(See Note 4) | RM
(See Note 5) | C _J @ V _R = 5 _V | | NUMBER | VOLTS | VOLTS | VOLTS | VOLTS | A | A | mA | pF | | MLL5817
MLL5818
MLL5819
MLL6650 | .36
.39
.39
.39 | .45
.55
.55 | .65
.85
.85
.80 | 20
30
40
45 | 1.0
1.0
1.0
1.0 | 50
50
50
50 | 1.0
1.0
1.0
1.0 | 105
70
70
70 | Note 1: 300µsec pulse, duty cycle = 2% Note 2: Derate linearly at 1.8 V/°C above $T_{EC} = 125$ °C Note 3: Derate linearly at 14 mA/°C above $T_{FC} = 80$ °C Note 4: 8.3 msec, 1/2 sine, $T_{FC} = 70^{\circ}C$ Note 5: I_{RM} tested at V_{RRM} # MLL5817, MLL5818, MLL5819 and MLL6650 ## Figures 1-3 for MLL5817 FIGURE 1 Typical Forward Characteristics FIGURE 2 Typical Reverse Characteristics FIGURE 3 Typical Junction Capacitance Figures 4-6 for MLL5818, MLL5819 & MLL6650 FIGURE 4 Typical Forward Characteristics FIGURE 5 Typical Reverse Characteristics FIGURE 6 Typical Junction Capacitance